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1. Installation and Compilation 
 
The Random Forest (RF) Toolbox is a suite of programs (written in C++), Perl scripts, 
and sample data files to support the training, testing, and performance reporting of 
Random Forest-based classifiers.  These inherently two-class classifiers operate on 
continuous or discrete input features and include: 
 

• Random Forest with misclassification-based node splitting (RF) 
• Random Forest with Gini Impurity-based node splitting (GRF) 
• Cost-Sensitive Random Forest (CS-RF) 
• Discriminant Random Forest (DRF) 

 
Further details describing each of the supported classifiers can be found in the Random 
Forest Variants section of this User’s Guide. 
 
Prior to compiling the toolbox, the user should select a base directory where the source 
code will be located. For simplicity, throughout this document we will often refer to this 
directory generically as <toolbox_base>.  Once a desired location has been selected, the 
user must copy the Toolbox archive to <toolbox_base> and unpack it. 
 

1.1 Unix and Mac 
Once unpacked, the toolbox supports two methods for compilation: 1) the Unix make 
utility (tested on Unix-like platforms PC Cygwin, PC Linux, and Mac OS X, with g++), 
or 2) Microsoft Visual Studio (for Windows platforms). To compile the toolbox using the 
make utility, simply navigate to the <toolbox_base> directory and type “make” at 
the prompt.  This will compile the C++ code and create the toolbox’s binary executables: 
 

• <toolbox_base>/Forests/Random/bin/train2 
• <toolbox_base>/Forests/Random/bin/classify 
• <toolbox_base>/Forests/Random/bin/proximity 
• <toolbox_base>/Forests/Random/bin/forestcat 
• <toolbox_base>/ComputeROC/bin/ComputeROC 
• <toolbox_base>/ComputeCost/bin/ComputeCost 

 

The Makefile found in <toolbox_base> can also be used to clean up all 
intermediate compilation files and final binary executables.  To perform this cleanup 
simply type “make allclean”. 
 

1.2 Windows 
To build the toolbox executables using Microsoft Visual Studio 2005, open the “Forest” 
solution (<toolbox_base>/Forests/msvc6/Forests.sln), click the “Build” 
drop-down menu, and click “Batch Build”.  This will open up a “Batch Build” dialog 
box.  On the right hand side, click the “Build” button to compile code.  This creates the 
binary executables: 

                                                
2 In the case of compiling under Cygwin, the binary executables will have a “.exe” suffix. 
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• <toolbox_base>/Forests/msvc6/rndforest/Release/train.exe 
• <toolbox_base>/Forests/msvc6/rndforest/Release/classify.exe 
• <toolbox_base>/Forests/msvc6/rndforest/Release/proximity.exe 
• <toolbox_base>/Forests/msvc6/rndforest/Release/forestcat.exe 

 

Open the ComputeROC solution  
(<toolbox_base>/ComputeROC/msvc6/ComputeROC.sln) 
and ComputeCost solution  
(<toolbox_base>/ComputeCost/msvc6/ROC.sln) 
and repeat the “Batch Build” instructions above.  The following executables will be built: 
 

• <toolbox_base>/ComputeROC/msvc6/Release/ComputeROC.exe 
• <toolbox_base>/ComputeCost/msvc6/Release/ComputeCost.exe 
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2. Executables and File Formats 
 

train 
train is the binary for training all of the Random Forest variants supported by this 
toolbox. Minimally, it reads at least one training file containing sample feature vectors 
and labels and outputs a Random Forest model file. Optionally, user-defined training 
parameters may be specified that determine numerous other Forest settings, described in 
detail in the train Parameters section. Figure 1 depicts the required (solid arrows) and 
optional (dashed arrows) inputs and outputs for train. 
 

 
Figure 1 – Box diagram for the inputs and outputs of the train program. Solid arrows indicate 
required input/output, while dashed arrows indicate optional input/output. 
 
 
The training file is a comma-separated text file that contains feature vectors and labels for 
a collection of samples (one per line).  The first line of this file begins with “#” and 
specifies the contents of each column.3 The first column will be the sample ID string, the 
second column contains the class (0 or 1), and the remaining columns correspond to 
features. Subsequent lines contain the actual sample ID, class, and feature vector for each 
of the data samples.  An example training file looks like this: 

Training a forest via train will generate three output files. 
 
The Random Forest model file that is output by the train program is a binary file 
containing the forest that was learned.  This model file can serve as input to the 
classify, proximity, and forestcat binaries. 
 
The log file (default name: modelfile.train_log) contains: 
                                                
3 This is not a comment line and should not be treated as such. 

#ID, Class, Feature1, Feature2, Feature3 
s9173, 0, .327898, 1.2569, 3 
s221, 0, .36726, 2.17864, 15 
. 
. 
. 
s17865, 1, .75897, 2.3269, 4  

Figure 2 – An example input feature file 
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• messages regarding the training parameters that were used to train the Random 
Forest model, 

• out-of-bag (OOB) estimates of Breiman’s strength and correlation,  
• the average accuracy of individual trees and the accuracy of the entire ensemble, 
• descriptive statistics for individual trees including depth, number of nodes, and 

OOB false positive and true positive rates, 
• the total training time of a particular forest.    

 
The OOB results file (a.k.a., OOB score file; default name: 
modelfile.oob_results) contains the trained forest’s OOB score for each sample. 
An example OOB score file is shown in Figure 3. 
 

 
Figure 3 – An example OOB results file 
 
As in the training file, the first line in the OOB score file begins with “#” and details the 
contents of the comma-separated columns. The first column is the sample index, in which 
15794 denotes the 15795th input sample found in the training file (in the case of multiple 
training files it is the 15795th sample read in by the train program, where each file is read 
in the order of its specification on the command line).  The second and third columns are 
the predicted class and true class of the sample, respectively. The fourth column contains 
the OOB score, which ranges between −1 (class 0) and 1 (class 1).  The final column 
contains the count of all trees for whom a sample is out-of-bag. 
 
If specified, the optional OOB sample indices file and OOB signed node indices file will 
be saved as modelfile.oob_samples and 
modelfile.oob_signed_node_indices, respectively. Row i of the OOB 
sample indices file lists the indices of the OOB training samples for tree i. This 
information is most useful for diagnostic purposes. Row i of the OOB signed node 
indices file lists the index of the leaf node that each OOB sample falls into for tree i. The 
sign of each index indicates whether the OOB sample was correctly (positive) or 
incorrectly (negative) classified by the tree.  Consider, for example, the OOB sample and 
signed node indices files shown in Figures 4 and 5. 
 

 
 
 

#ID, Class, True Class, Score, Count 
0, 0, 0, -1, 90 
1, 0, 0, -0.97, 89 
. 
. 
. 
15794, 1, 1, 0.37, 87 

1 3 8 
2 6 7 

Figure  4 – An example OOB sample indices file 
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In Figure 4, tree 1’s OOB samples are samples 1, 3, and 8, and tree 2’s OOB samples are 
2, 6, and 7.  Sample 1 falls in leaf node 33 of tree 1 and is correctly classified, sample 3 
falls in leaf node 14 of tree 1 and is incorrectly classified, …, sample 7 falls in leaf node 
21 of tree 2 and is incorrectly classified. Since most users do not require this level of 
detail, train does not produce these data files by default.  However, if this output is 
desired, the user must specify the −printOOBDetails flag on the command line. 
 

train Parameters 
The train program is quite flexible and gives the user direct control over many training 
options.  Here, we briefly describe each command line option. 
 
 
Parameter Meaning Default 
−i <infile> [infile ...] Name of one or more input feature file(s) for training.  
−s <modelfile>  Name of the output model file.  
[−f <feature name 
list>] 

Comma-separated names of features to use for training.  use all features 

[−x <feature name 
list>] 

Comma-separated names of features to exclude for 
training.  One can only specify either −f or −x, not both.  

use all features 

[−n <forestsize>] Number of trees in the forest.  500 
[−seed <int>]  Seed for random number generator.  current time 
[−nodeTransform 
<int>|None|DRF] 

Transformation applied to the data at each tree node. 
“DRF” specifies Discriminant Random Forest, while 
“None” specifies Breiman’s Random Forest.  

DRF 

[−threshOpt 
<int>|Misclassification
|Gini|Theoretic] 

Thresholding methodology used for node splitting. DRF 
uses the theoretic threshold, while Breiman’s Random 
Forest uses Gini impurity reduction.  
 

Theoretic 

[−dim <int>] Number of features to consider at each node for splitting, 
i.e., split dimensionality.  

sqrt(number of 
features) 

[−depth 
<max_depth>] 

Maximum depth to which trees will be grown  no max depth 
restriction 

[−size <max_size>] Stop training trees once they reach <max size> nodes.  no max size 
restriction 

[−stop 
<number>[%]] 

Stop splitting nodes once node data is less than <number> 
(may be specified as a percentage with respect to overall 
training data size via “%”).  

no minimum data 
sample restriction 

[−printOOBDetails] Print OOB sample indices and OOB signed node indices files 
to modelfile.oob_samples and 
modelfile.oob_signed_node_indices.  

flag unset (files 
not generated) 

[−no_bagging] Do not perform bagging, i.e., train each tree on all of the 
training samples.  

flag unset 
(bagging 
performed) 

33 -14 72 
85 377 -21 

Figure 5 –  An example OOB signed node indices file 
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[−balanced_training] During bagging, sample class 0 and class 1 equally.  flag unset (classes 
sampled 
proportionally) 

[−bagsize <number 
of samples to bag>] 

Specifies the number of samples in the bagged training set 
for each tree.  

number of 
training samples 

[−cost_per_neg_example 
<cost per negative example>] 

When −threshOpt is Misclassification, this is a penalty 
on misclassification of the negative class.  The penalty on 
misclassification of the positive class is always 1, so if 
cost per negative example > 1, false alarms are penalized 
more heavily than missed detections and vice versa.  

1 

[−prob_of_neg_example_for_bagging 
<prior prob. of negative 
example for bagging>] 

The probability of sampling a negative example for 
bagging. The probability for sampling a positive example 
is one minus this number.  

proportion of 
negative samples 
in the training 
data 

[−normmode <int> |0: 
none 1: mean/var 2: 
median/MAD] 

Prior to training, each feature is either not normalized (0: 
none), normalized by subtracting the mean and dividing by 
the standard deviation computed over the entire input data 
set (1: mean/var), or normalized by subtracting the median 
and dividing by 1.482*Median_Absolute_Deviation (2: 
median/MAD).  

mean/var 

[−m <classification 
method 0: left/right 1: 
majority>] 

Predicted class for a sample falling in a leaf node is 
determined either by which child node the leaf node is (0: 
left/right) or the majority class of training samples falling 
in the leaf node (1: majority).  
 

left/right 

[−sw <sample weight 
file>] 

The sample weight file is a text file containing the 
probability for sampling each input training data sample 
(one per line) during bagging. This allows the user 
complete control to over/under sample any specific 
training sample.  

uniform sampling 

[−log <output log 
file>] 

Output log file name.  modelfile.train_log 

 
 

classify 
Once a Random Forest is trained, we can use it to classify new data samples using the 
classify executable. In a nutshell, classify takes as input a trained model file and 
an input feature file (of the same format as the training file used by train), and outputs 
a score file in a similar format to the OOB results files, but absent the column of OOB 
counts. Figure 6 shows the box diagram for the required and optional inputs and outputs 
of classify. 
 

 
Figure 6 – Box diagram for the inputs and outputs of classify. Solid arrows indicate required 
input/output, while dashed arrows indicate optional input/output. 
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The log file of classify (default name: modelfile.classify_log) prints out 
parameter settings, status messages, and total run time.  
 
The optional node indices file contains the indices of the leaf nodes that a testing sample 
falls in for each tree in the forest with a sign indicating correct (positive) or incorrect 
(negative) classification. The first column contains the test sample number, and each 
ensuing column corresponds to a separate tree in the forest. Each row corresponds to a 
separate data sample. The example node indices file in Figure 7 shows that test sample 0 
falls into leaf node 6 of tree 1 and was correctly classified, test sample 0 falls into leaf 
node 28 of tree 2 and was incorrectly classified, …, and test sample 1 falls into leaf node 
290 of tree 3 and was incorrectly classified. 
 

 
 
 
As mentioned above, the score file generated by classify is identical to the OOB 
results file generated by train with the exception of the last column. In particular, the 
first row specifies the contents of the comma-separated columns, and it starts with “#”. 
The columns are:  

• Sample ID – A sample’s identifier 
• Class – The class predicted by the Random Forest.  This is 1 if the score is greater 

than the decision threshold, which defaults to 0, but can be specified using the −t 
switch. 

• True Class – The true class of the data sample 
• Score – The overall score resulting from tallying the votes of the individual trees.  

This ranges from −1 to 1.  The user can weight the votes for the negative class 
using the −cost_per_neg_vote switch. In particular, the score is given by: 

€ 

score = 2
NpositiveVotes

NpositiveVotes + cpnv* NnegativeVotes

−1   (1) 

where NpositiveVotes and NnegativeVotes are the number of trees in the forest that 
classified this sample as positive and negative respectively, and cpnv is the cost 
per negative vote specified by the user. 
  

 

0 6 -28 396 
1 17 39 -290 

#ID, Class, True Class, Score 
0, 0, 0, -1 
1, 0, 0, -0.95 
. 
. 
. 
91792, 1, 1, 0.82 

Figure 7 – An example node indices file. 

Figure 8 – An example score file 
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classify Parameters 
classify accepts the following command line arguments: 
 
 
Parameter Meaning Default 
−i <infile> [infile ...] Name of one or more input feature file(s)  containing 

samples to classify. 
 

−s <modelfile>  Input Random Forest model file.  
−o <scorefile> Output score file   
[−t <threshold>] Optional decision threshold  0.0 
[−cost_per_neg_vote 
<cost per negative vote>] 

Cost per negative vote  1.0 

[−m <classification 
method 0: left/right 1: 
majority>] 

Predicted class for a sample falling in a leaf node is 
determined either by which child node the leaf node is 
(0: left/right) or the majority class of training samples 
falling in the leaf node (1: majority).  

left/right 

[−on <output node 
indices file>] 

Output node indices file Unspecified (file not 
generated) 

[−log <output log file>] Output log file name.  modelfile.classify_log 

 

proximity 
Breiman’s proximity metric measures the degree to which two different data samples are 
close to each other, i.e., fall in the same leaf nodes in a forest. The proximity of data 
samples t1 and t2 in forest f is determined by the total number of times t1 and t2 fall in the 
same leaf node during classification divided by the total number of trees in f. Given a 
Random Forest model, the proximity program computes proximities between all data 
samples contained in Set 1 input feature file(s) and those contained in Set 2 input feature 
file(s). Figure 9 depicts the required (solid arrows) and optional (dashed arrows) inputs 
and outputs for proximity. 
 

 
Figure 9 – Box diagram for the inputs and outputs of the proximity program. Solid arrows 
indicate required input/output, while dashed arrows indicate optional input/output. 
 
The output proximity file contains all of the computed non-zero proximities between all 
pairs of Set 1 and Set 2 data samples. The file has three comma-separated columns whose 
contents are specified by the first row.  The header row begins with “#”, followed by the 
Set 1 input sample index (ID1), the Set 2 input sample index (ID2), and the computed 
proximity between the two data samples (Proximity). The remaining rows contain the 
sample pair indices and computed proximity. Figure 10 is an example proximity file 
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showing that sample 0 of Set 1 has a 0.036 computed proximity with sample 0 of Set 2, 
…, sample 8 of Set 1 has a 0.004 computed proximity with sample 1 of Set 2.  
 

 
 
 
 
proximity Parameters 
proximity accepts the following command-line arguments: 
 
 
Parameter Meaning Default 
−i1 <inputfile from set 1> 
[inputfile ...] 

Set 1 input feature file(s)  

−i2 <inputfile from set 2> 
[inputfile ...]  

Set 2 input feature file(s)  

−s <modelfile> Random Forest model  
−o <proximityfile> Output proximity file  
[−topN <topN 
proximities to output>] 

For each sample in set one, print only the top N 
most proximal samples in set two 

print all proximities 

[−m <classification method 
0: left/right 1: majority>] 

Predicted class for a sample falling in a leaf node is 
determined either by which child node the leaf node 
is (0: left/right) or the majority class of training 
samples falling in the leaf node (1: majority).  

left/right 

[−log <output log file>] Output log file name.  modelfile.proximity_log 

 

forestcat 
Sometimes it is useful to concatenate two smaller Random Forests to form one larger 
Random Forest. forestcat is the program that implements this capability. 
Additionally, forestcat can form a smaller forest from a subset of the trees in a larger 
forest. This capability enables simple parallelization of Random Forest training.  For 
example, a large 1000-tree Random Forest can be trained by first training 100 10-tree 
forests on separate CPUs with different random seeds. forestcat can then be used to 
concatenate these 100 10-tree forests to form a 1000-tree forest. 

#ID1, ID2, Proximity 
0, 0, 0.036 
0, 1, 0.028 
0, 4, 0.008 
0, 8, 0.008 
0, 2, 0.004 
1, 0, 0.064 
2, 0, 0.088 
3, 0, 0.308 
4, 0, 0.204 
5, 0, 0.06 
6, 0, 0.172 
7, 0, 0.076 
8, 0, 0.056 
8, 1, 0.004 

Figure 10 – An example proximity file 
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forestcat Parameters 
forestcat takes the following command-line arguments: 
 
Parameter Meaning Default 
−i 
<input_forestfile> 
[input_forestfile ...] 

Two or more input forest model files to concatenate, 
or only one input forest model file to subset 

 

−s 
<output_forestfile> 

The resulting concatenated or subsetted output forest 
model file. 

 

[−xs <cut_start>] The index of the first tree in the first input forest to 
subset 

first tree in the first 
forest 

[−xe <cut_end>] The index of the last tree in first input forest to subset last tree in first forest 
[−log <output log 
file>] 

Output log file name.  
output_forestfile.forestcat_log 

 
If either −xs or −xe are specified, then forest subsetting is performed on the first 
specified forest; otherwise, forest concatenation is performed. 
 

ComputeROC 
ComputeROC computes Receiver Operating Characteristic (ROC) curves from the input 
score file(s) in the score file format (generated by classify). The resulting output 
ROC curve file is a text file with three comma-separated columns.  The first column 
contains false positive rates, followed by the true positive rates, and the last column 
contains decision thresholds that were used to generate the corresponding false positive 
and true positive rates. A simple example of an ROC output file is shown below: 
 

 
  
 

ComputeROC Parameters 
ComputeROC takes the following command-line arguments: 
 
Parameter Meaning 
−i <inputfile> [−i 
<inputfile> ...] 

Input score file 
 

−o <outputfile> Output ROC curve file 
 

0.0, 0.0, 1.000001 
0.1, 0.3, 0.75 
0.3, 0.9, 0.0 
0.5, 0.93, -0.5 
0.7, 0.98, -0.8 
1.0, 1.0, -1.00001 

Figure 11 – An example ROC curve file generated by ComputeROC 
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ComputeCost 
In many applications, we are not only interested in quantifying the error rates, but also 
the expected cost incurred by a classification system. This metric is given by: 

 

€ 

EC = p(+) ⋅ (1−DR) ⋅ c(miss) + p(−) ⋅ FAR ⋅ c( falsealarm)      (2)  
 
where DR is the detection rate, p(·) is the prior probability for each class, and c(·) is the 
cost for each type of error. To enable visualization of this metric, Drummond and Holte 
developed “cost curves” that express expected cost as a function of the class priors and 
costs [Drummond2000]. Specifically, cost curves plot the expected cost (normalized by 
its maximum value) versus the probability cost function (PCF), which is given by: 

 

€ 

PCF =
p(+) ⋅ c(miss)

p(+) ⋅ c(miss) + p(−) ⋅ c( falsealarm)
      (3) 

 
Assuming equal priors, PCF is small when the cost for false alarms is large relative to 
that of missed detections. 
 
The ComputeCost program is used to compute cost curves from input ROC curve files 
like those generated by ComputeROC. The resulting cost curve file is a space-separated 
text file containing two columns. The first column contains the PCF points on the cost 
curve, and the second column contains the corresponding normalized expected cost. A 
sample cost curve file is shown below: 
 

 
  

 

ComputeCost Parameters 
ComputeCost takes the following command-line arguments: 
 
Parameter Meaning 
−i <inputfile>  Input ROC curve file 
−o <outputfile> Output cost curve file 
 

0.0000000000000000 0.0000000000000000 
0.1458783862392024 0.0166554550450427 
0.3596129796436564 0.0285333571560918 
0.7908049827420335 0.0235957884370535 
0.9806643972094288 0.0083922021734594 
1.0000000000000000 0.0000000000000000 

Figure 12 – An example cost curve file generated by ComputeCost 
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3. Perl Scripts 
In addition to the C/C++ binaries, the Random Forest Toolbox includes several useful 
wrapper Perl scripts described briefly below. These scripts can be found in the 
<toolbox_base>/Scripts directory. 
 

ComputeROC-oob.pl 
This script is a wrapper for ComputeROC when it is used to compute the ROC curves 
from an OOB results file. ComputeROC can be applied directly to the OOB results file, 
but it is not equipped to properly handle cases where a training sample is in-bag for all 
trees in the forest. For most training sets the chance of this happening is quite small, but 
on very small training sets (<10 samples) this can become an issue.  
ComputeROC−oob.pl discards the scores from the training samples that were in-bag 
for all trees, computes the ROC curve from the remaining scores, and prints out a 
warning message to alert the user that there were such training samples present. 
ComputeROC−oob.pl takes the following command-line arguments: 
 
Parameter Meaning 
−help Prints usage message 
−verbose <int> Prints chatty info for debugging 
−prog <string> ComputeROC binary executable file 
−tmpdir <string> Directory for placing temporary files 
−i <string> Input OOB results file(s) 
−o <string> Output ROC curve file 
 

statsFromROC.pl 
This script computes performance statistics on an input ROC curve. The statistics 
include: the equal error rate (i.e., EER, the rate of equal false alarms and missed 
detections), the false alarm rate at a user-specified or default detection rate, the detection 
rate at a user-specified or default false alarm rate, and the area under the ROC curve 
(AUC) over a specified false alarm rate interval (which defaults to the interval [0.0, 1.0]).  
 
statsFromROC.pl accepts the following command-line arguments: 
 
Parameter Meaning Default 
−help Print usage message  
−roc <string> Input ROC curve file  
−det <float> Detection Rate for Computing False Alarms 0.95 
−far <float> False Alarm Rate for Computing Detection Rate 0.01 
−verbose Print wordy outputs  
−as <float> Starting false alarm rate for AUC computation 0.0 
−ae <float> Ending false alarm rate for AUC computation 1.0 
−noInterp Do not interpolate when computing AUC  
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empirical-ROC-Bands.pl 
empirical-ROC-Bands.pl takes two or more input ROC curve files and computes 
empirical percentile bands: the (C/2)th, the 50th, and the (100−C/2)th percentile bands, 
where C is a user-specified “confidence” level. The approach for computing percentiles is 
consistent with the “vertical averaging” approach for averaging multiple ROC curves 
described in [Fawcett2006]. This approach steps through every false alarm rate found in 
the input ROC curves, and computes the desired percentiles from the corresponding 
detection rates (interpolated if needed).  
 
empirical-ROC-Bands.pl accepts the following command-line arguments: 
 
Parameter Meaning Default 
−help Print usage message  
−debug <int> chatty info on stderr  
−i <string> Input ROC files (must specify 2+ ROC files)  
−confidence <float> Confidence level 0.05, which computes the 2.5th, 

50th , and 97.5th percentile bands 
−outDir <string> output directory  
−outName <string> basename for all output ROC files  
−doInterpAtExt Do interpolation at extreme FAR (FAR=0.0 or 

FAR=1.0) 
 

 
This script produces three output ROC curve files corresponding to the (C/2)th, the 50th, 
and the (100−C/2)th percentile bands in the output directory: 
outName_(C/2)_percentile.roc, outName_50_percentile.roc, and 
outName_(100−C/2)_percentile.roc.  
 
 

runRFConfBands.pl 
This script, which resides in the 
<toolbox_base>/Scripts/ConfidenceBands/ directory, automates the 
process of training multiple instantiations of a single type of Random Forest, each with a 
different initial random seed. Each forest is tested on a specified test set and 
corresponding ROC curves are generated.  empirical-ROC-Bands.pl is used to 
generate ROC percentile bands, and Cost curves are finally computed from these bands. 
The final product of this script is a set of percentile bands for ROC and Cost curves in 
outDir that can be used for significance comparisons with other Random Forest 
variants. It accepts all of the same arguments that train accepts, which allows the user 
to specify the type of Random Forest desired. Additionally, it accepts the following 
command-line arguments: 
 
Parameter Meaning 
−help Print usage message 
−debug <int> chatty info on stderr 
−outDir  <string> Input ROC files (must specify 2+ ROC files) 
−trainName <string> Experiment name for training files 
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−classifyName 
<string> 

Experiment name for classify files 
 

−confName <string> Experiment name for confidence bands files 
−seed <int> Starting random number generator seed for 

experiments 
−numReseed <int> Number of training repeats, i.e., instantiations  
−restartLevel <int> Restart level 

0: Restart from training all RFs 
1: Restart from classifying test set and 

generating ROC curves 
2: Restart from aggregation of ROC curves for 

computing percentile bands 
−confidence <float> Confidence level of confidence bands 
−it <string> Input training file(s) 
−ic <string> Input testing file(s) 
−trainProg <string> RF train program 
−classifyProg 
<string> 

RF classify program 

−rocProg <string> ComputeROC program 
−rocBandsProg 
<string> 

ROC Confidence program, i.e.,   empirical-
ROC-Bands.pl 

−costProg <string> ComputeCost program 
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4. Random Forest Variants 
In this section we describe the Random Forest algorithms that are included in the 

Random Forest Toolbox in further detail.  

The Random Forest Algorithm 
The Random Forest (RF) is a highly effective classification methodology that consists 

of a “forest” of decision trees that are grown independently from a training data set.  A 
Random Forest predicts the class of a test sample by voting the individual decision tree 
class predictions.  Specifically, the ratio of the number votes for class k to the total 
number of trees is a measure of the degree to which the RF believes the sample is from 
class k.  

To train an RF, individual decision trees are trained on bootstrap samples of the 
original training data and added to the forest until the desired number of trees is reached. 
To train a single decision tree, decision nodes split the tree’s training data in a breadth-
first manner until all nodes are homogeneous (i.e., containing only samples from a single 
class) or some predefined stopping condition is reached (e.g., minimum number of data 
samples at a node). Each decision node partitions or “splits” its incoming samples into 
two sets, one of which is passed to the node’s left child while the other is passed to the 
node’s right child. One key characteristic that contributes to the power of the RF, shared 
among all its variants, is the random sampling of features (or feature subspaces) at each 
node upon which the splitting decision is based. The differences among the RF variants 
described below lie primarily in how they learn to split the data at each node. 

RF and Gini RF 
The simplest classifier in the Random Forest Toolbox is the RF, whose node splitting 

criteria is based solely upon the node-level misclassification rate. At each node in the 
decision tree, as mentioned above, data are partitioned (“split”) into two sets – one set 
goes to the left child node, and the other goes to the right child node. Successive nodes 
are added until the resulting partitioned data sets are homogeneous. Each split is based 
upon a subset of features (of some predetermined dimension) uniformly sampled from the 
set of all available features. For each feature subset, the single feature and threshold that 
minimize the misclassification rate of the resulting data partition is computed. Thus, the 
separating hyperplane within a node is determined by the threshold on the feature 
dimension yielding the lowest misclassification rate, as given by: 
 

€ 

argmin
t , f

misclass t, f( ) = N falseAlarms t, f( ) + NmissedDetections t, f( )    (4) 

€ 

N falseAlarms t, f( ) = i yR = 0( )
xR ∈D

R,t , f

∑         (5) 

€ 

NmissedDetections t, f( ) = i yL =1( )
xL ∈D

L ,t , f

∑        (6) 

where (xR,yR) and (xL,yL)  are training samples (feature vector, class label) from DL,t,f and 
DR,t,f, data passed to the right and left child nodes, respectively, as a result of splitting the 
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current node using threshold t on feature f. Note that the resultant separating hyperplane 
is normal to the best feature dimension’s axis. 

 
An alternative node splitting mechanism that is more commonly used computes the 

decision threshold, t, that maximizes the Gini impurity reduction of the split over every 
sampled feature.  This maximization is formally given by: 

 

€ 

argmax
t , f

Δi t, f( ) = i D( ) − i DL,t , f( ) − i DR ,t, f( )       (7) 

 
where D is the data belonging to the current node, and as in the simple RF case, DL,t,f and 
DR,t,f are data belonging to the left and right child nodes as a result of splitting D using 
threshold t on feature f. i(D) is the Gini impurity of D and is in general given by: 
 

         (8) 

 
where p(Dk) is the probability of class k in D.  This simplifies to the following for a two-
class problem: 
 

€ 

i D( ) =1− p(D0)
2 − p(D1)

2 = 2p(D0)p(D1) ≅ 2
n0

n0 + n1
n1

n0 + n1
    (9) 

 
where n0 and n1 are the number of samples in class 0 and 1 respectively. 

Cost-Sensitive RF  
One of our motivations in pursuing this work was the development of new classifiers 

that could robustly achieve high detection rates at ultra-low FARs. In many cases, false 
alarms are more costly than missed detections. Cost-sensitivity refers to the ability of a 
classifier to learn decision boundaries that preferentially learn the costlier class, i.e., 
boundaries that sacrifice some performance for the less costly class while enhancing the 
performance on the costlier class. 

In a RF, there are two places where one can make cost-sensitive enhancements. First, 
in the bootstrap sampling of training data, one can preferentially sample the costlier class. 
Providing more instances of the costlier class encourages the classifier to better model 
that class. Our RF software includes a parameter called “Probability of Negative Example 
for Bagging” (pneb), which allows the user to specify the probability of randomly 
sampling a negative sample.  The probability of sampling a positive sample is 1−pneb. 

The other place to modify RF for cost-sensitivity is at the node splitting mechanism.  
Misclassification treats errors coming from false alarms and missed detections equally, so 
in order to make the node splitting cost-sensitive, we replace the misclassification metric 
(4) with the cost-sensitive misclassification metric given in (10): 

 

€ 

c = cpne∗N falseAlarms + (1− cpne)∗NmissedDetections     (10) 
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where cpne is the cost per negative example, i.e., the cost of misclassifying a negative 
example (false alarm). Larger values of cpne result in decision boundaries that make 
fewer false alarm mistakes. As with pneb, our RF code supports user-specified settings 
for cpne. Good settings for pneb and cpne can be found by optimizing an OOB 
performance metric (e.g., Area Under the ROC curve or expected cost) via a grid search 
or Amoeba search. 

  

Discriminant RF 
The Discriminant Random Forest (DRF) is a powerful variant of the classical Random 
Forest (RF). The novelty (as well as power) of the DRF comes from the way it performs 
its node-level splits in the constituent decision trees.  Unlike the regular RF whose node-
level split boundaries are constrained to be axis-aligned hyperplanes in feature space, the 
DRF split boundaries can be hyperplanes of any orientation. Its multivariate hyperplanes 
are derived from Discriminant Analysis techniques. These types of techniques leverage 
the class means and covariance matrices to determine an optimal separating hyperplane 
under the assumption of multivariate normality. Though this assumption rarely holds in 
practice, we have found these techniques to be highly effective in combination with the 
Random Forest paradigm.  

By default, the DRF utilizes the theoretical threshold defined by the separating 
hyperplane to split the data.  Specifically, data falling on one side of the boundary will be 
passed to one child node, and the remaining node data will pass to the other child (the 
right child node is predominantly associated with the positive class and the left one with 
the negative class).  
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5. Examples 
 
All of the examples below can be found in the <toolbox_base>/TestData/ 
directory. 

Example 1: A complete cycle of train, classify, computeROC, 
and computeCost for a Discriminant Random Forest. 
In this example, we show the complete cycle of training, testing, and computing ROC 
and Cost curves for a Discriminant Random Forest on the example training and testing 
sets (T1 and J1 respectively).  
 
example1.pl trains a Discriminant Random Forest on training sample files 
T1_P_0.txt and T1_P_100.txt with split dimensionality 2 and 250 trees on a 
sample dataset using only eight of the 12 available features: F1, F2, F3, F4, F5, F6, F7, 
F8. The train command-line looks like this: 
 
>> ../Forests/Random/bin/train −n 250 −seed 7361973 
−nodeTransform DRF −threshOpt theoretic −printOOBDetails 
−dim 2 −f "F1, F2, F3, F4, F5, F6, F7, F8" −i 
InputData/T1_P_0.txt −i InputData/T1_P_100.txt −s 
example1.rf 
 
Note that this command-line also specifies the seed for the random number generator to 
be 7361973, and it also requests that the OOB sample indices and OOB node indices files 
to be generated (−printOOBDetails).  The trained Discriminant Random Forest 
model will be saved in the file example1.rf. 
 
classify can now take the trained forest and run test set files J1_P_0.txt and 
J1_P_100.txt through it using the command-line: 
 
>> ../Forests/Random/bin/classify −s example1.rf −i 
InputData/J1_P_0.txt −i InputData/J1_P_100.txt −o 
example1.testscores 
 
The output score file example1.testscores can then be used to compute a ROC 
curve file using ComputeROC called with the following command-line: 
 
>> ../ComputeROC/bin/ComputeROC −i example1.testscores −o 
example1.roc 
 
This results the ROC curve file example1.roc which can then be used by 
ComputeCost to compute a Cost curve using the following command-line: 
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>> ../ComputeCost/bin/ComputeCost −i example1.roc −o 
example1.cost 
 

Example 2: forestcat in action 
This example exercises the forestcat utility by first building one larger forest from 
two smaller forests, and then subsets the larger forest to extract the first original smaller 
forest. More specifically, the script example2.pl trains two Gini Random Forests (one 
with 50 trees and another with 100 trees) named example2_first.rf and 
example2_second.rf4.  These two forests are then concatenated using forestcat 
with the following command-line: 
 
>> ../Forests/Random/bin/forestcat −i example2_first.rf −i 
example2_second.rf −s example2_combined.rf 
 
example2_combined.rf is a 150-tree Gini Random Forest whose first 50 trees are 
the ones from example2_first.rf and whose last 100 trees are from 
example2_second.rf. 
 
Next, we can subset and extract the first 50 trees from example2_combined.rf and 
save it to a new model file named example2_first-copy.rf by executing: 
 
>> ../Forests/Random/bin/forestcat −i example2_combined.rf 
−s example2_first-copy.rf −xs 0 −xe 49 
 
example2_first-copy.rf should be an exact copy of the original 
example2_first.rf. The user is left to verify this by executing: 
 
 
>> diff example2_first.rf example2_first-copy.rf 
  
Finally, example2.pl computes three separate score files of the test set for each of the 
following models: example2_first.rf example2_first-copy.rf and 
example2_combined.rf. 
 

Example 3: Using runRFConfBands.pl to Compute Percentile 
ROC/Cost Bands 
In this example script (example3.pl), we use runRFConfBands.pl to train 
multiple instances of a Discriminant Random Forest (each differing only in their random 
seed), to classify a test set, and finally to compute percentile bands from their ROC and 
Cost curves. example3.pl executes the following two commands: 
                                                
4 Note, in particular, that each of these Random Forests are trained using different random seeds.  This is 
important when one wants to build a larger random forest from two or more smaller random forest without 
having replicates of trees in the larger forest. 
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>> mkdir −p ./example3 
 
>> ../Scripts/ConfidenceBands/runRFConfBands.pl −trainProg 
../Forests/Random/bin/train −classifyProg 
../Forests/Random/bin/classify −rocProg 
../ComputeROC/bin/ComputeROC −rocBandsProg 
../Scripts/empirical-ROC-Bands.pl −costProg 
../ComputeCost/bin/ComputeCost −outDir ./example3 −trainName 
T1_P_100 −classifyName J1_P_100 −confName test11reseeds 
−seed 4239429 −numReseed 11 −restartLevel 0 −confidence 0.1 
−it ./InputData/T1_P_0.txt −it ./InputData/T1_P_100.txt −f 
"f1,f2,f3,f4,f5,f6,f7,f8" −n 5 −nodeTransform DRF −threshOpt 
Theoretic −dim 2 −stop 30 −m 0 −ic ./InputData/J1_P_0.txt 
−ic ./InputData/J1_P_100.txt 
 
The first command creates the output directory where runRFConfBands.pl will 
save files to, and the second one calls runRFConfBands.pl to do the real work. 
When running runRFConfBands.pl, make sure you specify the correct locations for 
the binary executables: train, classify, ComputeROC, ComputeCost, and 
empirical-ROC-Bands.pl; the locations can be specified using the −trainProg, 
−classifyProg, −rocProg, −costProg, and −rocBandsProg switches 
respectively. −trainName, −classifyName, −confName are basenames for the 
files that runRFConfBands.pl will produce. In this example, these are set to 
“T1_P_100”, “J1_P_100”, and “test11reseeds” respectively.  
runRFConfBands.pl will thus create subdirectories of the directory 
<toolbox_base>/example3/ for each instance of a forest using the name 
T1_P_100.randomSeedUsed/.  Inside these subdirectories will be the trained 
random forest model, and the score files and resulting ROC curve files resulting from 
classifying the J1 example test set using the trained model.  The score files and ROC files 
will be named J1_P_100.decvals J1_P_100.roc respectively.  
 
example3.pl calls runRFConfBands.pl to train 5-tree Discriminant Random 
Forests with early stopping at 30 samples.  11 forests are trained on the T1 sample data 
set using successive random seeds starting at 4239429. runRFConfBands.pl then 
computes the 5th, 50th, and 95th percentile bands from the 11 ROC curve files and saves 
them to test11reseeds_5_percentile.roc, 
test11reseeds_50_percentile.roc  
test11reseeds_95_percentile.roc in the <toolbox_base>/example3/ 
directory. Finally, Cost curves are computed from these and saved to 
test11reseeds_5_percentile.cost, 
test11reseeds_50_percentile.cost  
test11reseeds_95_percentile.cost in the 
<toolbox_base>/example3/ directory. 
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Example 4: Train, classify, compute proximities, ROC and Cost 
curves, subset and concatenate Random Forest variants 
example4.pl performs a full suite of operations for the following types of Random 
Forests described earlier: 

• Random Forest with misclassification node splitting criteria 
• Cost-Sensitive Random Forest 
• Random Forest with Gini node splitting criteria 
• Discriminant Random Forest 
• Discriminant Random Forest with Early Stopping 

This script is useful for learning the command-line arguments required for training each 
of the above variants. For each RF variant, example4.pl will (1) train the forest on the 
example hidden signal training data, (2) classify a test set using the trained forest, (3) 
compute proximities between every two data points in a pair of test sets, (4) compute 
ROC and Cost curves, and (5) subset the forest model into two subforests and then 
concatenate them to reproduce the original forest mode using forestcat.  All output 
model, score, OOB, ROC curve, Cost curve files will be saved in the example4 
directory. 
 

Random Forest with misclassification node splitting criteria 
The relevant training parameters for training a basic random forest with misclassification 
node splitting criteria are: 

−nodeTransform none 
−threshOpt misclassification 
−m 0 

These parameters specify that no node-level feature transformation is to be applied, that 
the threshold used for splitting data at a node should optimize for minimum 
misclassification, and that the final determination of class identities should be based on 
whether the sample falls in the left or right child leaf node (rather than by majority class). 
 

Cost-Sensitive Random Forest 
The Cost-Sensitive Random Forest is very similar to the misclassification-based Random 
Forest, but in this case, there are two cost-sensitive parameters that the user may specify: 
the probability for sampling a negative example in bagging (pneb) and the cost per 
negative example (cpne).  pneb controls how likely a negative example will be sampled 
in each bagged training set.  This is specified using the 
−prob_of_neg_example_for_bagging switch. cpne controls the penalty for 
misclassifying a negative sample when using the misclassification node splitting criteria.  
This is specified using the −cost_per_neg_example switch. The example Cost-
Sensitive Random Forest in example4.pl is trained with the following relevant 
parameters: 

−nodeTransform none  
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−threshOpt misclassification  
−cost_per_neg_example 10 
−prob_of_neg_example_for_bagging 0.65 
−m 0 

These parameters are the same as those for the misclassification-based Random Forest, 
except with the cost-sensitive parameters specified. 
 

Gini Random Forest 
The Gini Random Forest is the most common variant of Random Forest described in the 
literature. Instead of using misclassification as the metric for determining the optimal 
threshold for splitting data at each node, the Gini Random Forest uses the Gini impurity 
reduction criterion.  To specify the training of a Gini Random Forest, use the following 
command-line parameters: 

−nodeTransform none 
−threshOpt Gini 
−m 1 

Like the previous two random forest variants, no node-level feature transformation is to 
be applied, but for this classifier we use the Gini impurity reduction metric for threshold 
optimization, and we base the final classification on the majority class of the training data 
that falls into a leaf node. 
 

Discriminant Random Forest Without and With Early Stopping 
Unlike the previous Random Forest variants, the Discriminant Random Forest applies a 
discriminant-based transformation to the data at each node and uses the resulting decision 
boundary as a threshold. To specify the training of a Discriminant Random Forest, use 
the following command-line parameters: 

−nodeTransform DRF 
−threshOpt Theoretic 
−m 0 

This set of arguments tells the trainer to perform the DRF transformation at each node 
and then use the theoretic threshold defined by the computed boundary.  Moreover, the 
final classification of a sample is based upon whether a sample falls in the left or right 
child leaf node. Other threshold optimization methods can also be used (e.g., 
misclassification or Gini), but we have found the best performance comes from using the 
theoretic one. 
To train a Discriminant Random Forest with early stopping, simply specify a forest 
stopping criteria. Typically, we set a threshold for the minimum number of data samples 
at a node required for splitting. The parameter settings below are for training a 
Discriminant Random Forest with an early stopping criteria of 30 mininum data samples 
at a node: 

−nodeTransform DRF 
−threshOpt Theoretic 
−m 0 
−stop 30 
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6. Benchmark Studies 
In this section, we show some experimental results obtained by applying the Random 
Forest Toolbox on two interesting datasets: Hidden Signal Detection and MAGIC 
Gamma Telescope. 
 

Hidden Signal Detection Dataset 
The goal in the Hidden Signal Detection application is to detect the presence of an 
embedded signal. The Hidden Signal Detection application is an example of the type of 
real-world problems that we developed our Random Forest algorithms to address: an 
application requiring an acceptable detection rate with ultra-low false alarm rates. 
Hence, the ROC curves that we plot will have the false alarm axis in log scale so as to 
better see performance differences at low false alarm rates (this also applies for the 
MAGIC Gamma Telescope application in the next subsection). The data for these 
experiments are composed of two separate sets. The training data set consists of 7931 
negative class samples (i.e., no embedded signal) along with 7869 positive class samples 
(i.e., signals embedded with 100% signal strength). For testing, we have another set 
consisting of 179,527 negative class samples and 9,426 positive class samples with 100% 
embedded signal strength. The larger number of negative samples in the test set allows us 
to see performance differences at false alarm rates as low as 5.57x10−6. All data samples 
consist of eight continuous-valued features useful for detecting the presence of embedded 
signals. 
 
In this subsection, we compare the performance of all the major Random Forest variants 
supported by the toolbox: Random Forest with misclassification-based node splitting 
(Misclass RF), Cost-Sensitive Random Forest (CS-RF), Random Forest with Gini 
impurity-based node splitting (Gini RF), Discriminant Random Forest (DRF), and 
Discriminant Random Forest with early stopping (DRF EarlyStop30). For each RF 
variant, 101 forests were trained and tested using different random seeds. Based upon the 
resulting ROC curves, a “median” ROC and corresponding upper and lower confidence 
limits were computed for each methodology using a variant of the vertical averaging 
approach described in [Fawcett2006]. Specifically, for each false alarm rate (FAR) value, 
the 101 corresponding detection rates were ranked, and their median detection rate was 
computed along with their 97.5th  and 2.5th  percentiles. Using this data, the median ROC 
(i.e., 50th percentile), the 97.5th , and 2.5th  percentile bands for best split dimension of 
each RF variant were computed and are shown in Figure 13. Each RF variant consists of 
1000 trees. 
 
Figure 13 shows a progression of RF variant performance that we have observed for other 
datasets as well.  First, the Misclass RF has always been the laggard among the RF 
variants with respect to detection performance at low false alarm rates5. The CS-RF 
                                                
5 Anecdotally, the Misclass RF’s performance is still better than other classification 
methods (e.g., support vector machines and neural networks) applied to this problem 
which speaks to the power of Random Forest based methods. 



 26 

system in this case is simply a Misclass RF with a bias toward oversampling of the 
negative class which leads to a detection improvement for false alarm rates less than 
3x10−4. This particular CS-RF system uses a 95% probability of negative example for 
bagging which emphasizes the learning of the negative class. At the other end of the ROC 
curve (high false alarm rates), CS-RF does not outperform Misclass-RF which is as 
expected since this CS-RF is not focused on modeling the positive class better than the 
negative class. If one desired to have ultra low miss rates instead of ultra low false alarm 
rates, setting the probability of sampling a negative example for bagging to some low 
probability would likely work.  
 
Gini RF provides similar detection performance as the CS-RF at the very low false alarm 
rate region, but for higher false alarm rates it is much better (e.g., for false alarm rates 
greater than 3x10−4).  Our newly developed DRF, which is much different than the three 
RF variants discussed above, shows evidence of detection superiority for false alarm rates 
below 2x10−4. However, with early stopping (i.e., stop training when the nodes contain 
fewer than some specified number of points – in this case, 30) applied to DRF, the 
superiority in detection performance is statistically significant for false alarm rates less 
than 2x10−3 where the DRF EarlyStop30 percentile bands do not overlap those of any 
other system. 
 

 
Figure 13 – ROC percentile bands (2.5th, 50th, and 97.5th percentiles) of the major RF variants 
supported by the toolbox applied to the Hidden Signal Detection dataset. Results are shown using the 
best split dimensionality for each RF variant.  In the case of Cost-Sensitive RF (CS-RF) the cost per 
negative example is 1.0 and the probability of negative example for bagging is 95%. 
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In Figure 14, we plot the percentage improvement in the median ROC curves presented 
in Figure 13 with respect to that of the Gini RF system over the entire range of false 
alarms. This immediately shows the range of false alarms over which any RF variant is 
superior or inferior to the Gini RF.  At ultra-low false alarm rates (< 10−4), the CS-RF, 
DRF, and DRF EarlyStop30 all give better performance than Gini RF.  However, only 
DRF EarlyStop30 demonstrates gains in low false alarm rates while preserving detection 
performance at higher false alarm rates compared to the Gini RF. 
 

 
Figure 14 – Percentage improvement in median detection rates with respect to that of the Gini 
Random Forest on the Hidden Signal Detection dataset. 
 
Another way to compare performance is to use the cost curves that we described in 
Section 2. Cost curves plot the normalized expected cost versus the probability cost 
function (PCF). Given a fixed prior on the positive and negative classes, lower values of 
PCF correspond to cases where the cost of false alarms is greater than the cost of missed 
detections.  In Figure 15, we plot the cost curves corresponding to the ROC percentile 
bands displayed in Figure 13.  Assuming equal priors, PCF values less than 10−3 
correspond to the case that false alarms cost more than 100 times more than missed 
detections. With these cost settings, Figure 15 paints a very similar story as the ultra-low 
false alarm rate comparisons in Figure 13.  In particular, the rankings with respect to 
achieving low normalized expected cost of the 5 systems is consistent – Misclass RF is 
the worst, Gini RF and CS-RF are better, DRF is better than these but not significantly, 
and DRF EarlyStop30 significantly outperforms all of the variants.  
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Figure 15 – Cost curve percentile bands (2.5th, 50th, and 97.5th percentiles) of the major RF variants 
supported by the toolbox applied to the Hidden Signal Detection dataset.  These cost curves 
correspond to the ROC curves displayed in Figure 13. 
 
Table 1 compares the RF variants in terms of physical characteristics of their trained 
forests on the Hidden Signal dataset.  It shows each variant’s average tree depth, average 
number of nodes per tree, the ratio of the average number of nodes to depth, average 
training time per tree, and average memory usage per tree. Interesting observations can 
be made about each of the RF variants based on these statistics.  First, with regard to tree 
geometry, the Misclass RF tends to learn rather tall and skinny6 trees.  The CS-RF learns 
shorter and skinnier trees compared to Misclass RF.  Gini-RF learns shorter trees that are 
denser/bushier than the Misclass RF. The DRF forests are even shorter and bushier than 
the rest. This presumably can be attributed to the stronger data separation at each node 
provided by its discriminant-based decision boundary, which precludes the need for long 
chains of successive node splits to generate equivalent separations. Second, in terms of 
training time and memory consumption per tree, Gini RF trains the fastest and has nearly 
the lowest footprint. Misclass RF trains much slower and takes about twice as much 
memory per tree than Gini RF. The CS-RF trains at nearly the same speed and takes 
about the same amount of memory as Gini RF. DRF trains the slowest which is not 
surprising given the type of threshold computation performed at each node, but with early 
stopping the training time is nearly on par with Gini RF. Memory usage for both DRF 
variants is larger than Gini RF, but in the case of DRF EarlyStop30, only twice as much 
memory is used per tree compared to Gini RF (11,313 bytes versus 6,711 bytes). 
 

                                                
6 Skinny is the opposite of dense or bushy and can be loosely characterized by the average number of nodes 
to depth ratio. Smaller values indicate skinniness, while larger values indicate denseness or bushiness. 
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RF Variant Average 
Tree Depth 

Average # 
Nodes per 

Tree 

Average 
Node to 

Depth Ratio 

Training 
Time per 
Tree (s) 

Average 
Memory 

Usage per 
Tree (bytes) 

Misclass RF 101.9 815.4 8.0 0.16 13046 
Gini RF 22.5 419.4 18.7 0.06 6711 
CS-RF 50.9 362.6 7.1 0.08 5802 
DRF 17.4 1308.9 75.3 0.21 31413 
DRF EarlyStop30 13.7 471.4 34.3 0.09 11313 

Table 1 – Statistics of representative forests for each of the major RF variants trained on the Hidden 
Signal Detection dataset. All forests were trained on a MacPro 2 x 3 GHz Quad-Core Intel Xeon 
machine.  
 
 

 
Figure 16 – The area under the ROC curve (AUC) for very low false alarm rates between 0.0 and 
0.001 for representative forests of each RF variant versus the number of trees in the forest trained 
and tested on the Hidden Signal Detection dataset. 
 
It is important to keep in mind that the speed and memory metrics in Table 1are 
computed on a per tree basis. The number of trees required to achieve equal detection 
performance will ultimately dictate which variant has the best overall forest speed and 
memory footprint. In Figure 16 we plot the area under the ROC curve (AUC) over the 
low false alarm rates of interest for this application (i.e., 0 to 10−3) versus the number of 
trees in the forest for the representative RF variants used to generate Table 1. When 
comparing DRF EarlyStop30 to Gini RF, it takes about 25 trees for DRF EarlyStop30 to 
achieve an AUC of 0.0007 (70% of maximum possible AUC from 0 to 10−3 false alarm 
rates), while the Gini RF requires about 150 trees. This means that the total training time 
required for training a Gini RF of 150 trees is about 8.4 seconds compared to 2.2 seconds 
required to train a DRF EarlyStop30 of 25 trees. Similarly, the DRF EarlyStop30 of 25 
trees takes about 283 Kbytes, while the Gini RF of 150 trees takes about 1,007 Kbytes. 
Thus, from both the detection performance, and speed/memory requirements standpoint, 
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the DRF algorithm with early stopping clearly outperforms all the other variants on the 
Hidden Signal Detection dataset. 

MAGIC Gamma Telescope Dataset 
 
The MAGIC Gamma Telescope dataset, available via the UCI Machine Learning 
Repository [Asuncion2008], is a two-class dataset used for differentiating simulated 
events observed by a Gamma-ray telescope. The goal is to classify foreground events 
from background events using ten continuous-valued image processing features. This 
dataset consists of 12,332 foreground (positive class) events and 6,688 background 
(negative class) events. The first 2/3 of each class is used for training, while the last 1/3 is 
used for testing in a manner consistent with the seminal benchmark paper published by 
the authors of this dataset [Bock2004].  In fact, Bock et. al. in [Bock2004] tested the Gini 
Random Forest’s performance on this dataset and found that a split dimension of 3 was 
optimal and that 50 trees was sufficient for achieving good results on this dataset. As in 
the Hidden Signal application, this application also puts a premium on ultra-low false 
alarm rates according to its authors.  In this subsection, we repeat their experiments and 
compare these results to other Random Forest variants that we have developed.  We also 
plot percentile bands to assess the statistical significance of the comparisons and find 
evidence that the Discriminant Random Forest leads to better detection performance, 
especially at false alarm rates near 10−2. 
 
Figure 17 displays the ROC percentile bands for the four RF variants tested in this 
subsection: Random Forest with misclassification-based node splitting (Misclass RF), 
Random Forest with Gini impurity-based node splitting (Gini RF), Discriminant Random 
Forest (DRF), and Discriminant Random Forest with early stopping (DRF EarlyStop30). 
A similar ranking of detection performance at low false alarm rates is observed for this 
dataset as in the Hidden Signal dataset.  Misclass RF underperforms the rest, Gini RF is 
significantly better, and DRF and DRF EarlyStop30 are better than Gini RF for false 
alarm rates less than 5x10−2. Unlike in the Hidden Signal detection application, the 
separation in the ROC percentile bands of DRF EarlyStop30 is not as strong.  In fact, the 
ROC percentile bands of DRF EarlyStop barely avoid overlapping with those of the Gini 
RF for false alarm rates between 7x10−3 and 2x10−2. Despite the overlap, there is still 
evidence that both DRF variants give a higher chance of performance improvements over 
Gini RF as the percentage improvements in median ROC curves with respect to Gini RF 
show in Figure 18.  Both DRF variants lead to large relative improvements in detection 
rates at the lowest false alarm rates measureable on this dataset. 
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Figure 17 – ROC percentile bands (2.5th, 50th, and 97.5th percentiles) of RF variants supported by the 
toolbox applied to the MAGIC Gamma Telescope dataset. Results are shown using the best split 
dimensionality for all forests (dim=3).   

 
Figure 18 – Percentage improvement in median detection rates with respect to that of the Gini 
Random Forest on the MAGIC Gamma Telescope dataset. 
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Figure 19 – Cost curve percentile bands (2.5th, 50th, and 97.5th percentiles) of RF variants supported 
by the toolbox applied to the MAGIC Gamma Telescope dataset.  These cost curves correspond to 
the ROC curves displayed in Figure 17. 
 
The cost curves in Figure 19 show the normalized expected cost of the various systems 
over PCF values between 0 and 0.1, which, assuming equal priors, correspond to cases 
where the cost for false alarms is about ten or more times greater than the cost for missed 
detections. In this regime, Misclass RF has significantly higher expected cost.  The Gini 
RF has lower expected cost, while the DRF variants have even lower ones. Toward the 
PCF values near 0.1, the superiority of the DRF variants over the Gini RF is statistically 
significant as their percentile cost bands do not overlap. The bands start overlapping for 
PCF values less than 0.05, but the median cost curves for both DRF variants continue to 
lie below that of the Gini RF.  This suggests that the DRF variants continue to enjoy an 
advantage with respect to the Gini RF when the cost for false alarms is greater than the 
cost for missed detections. 
 
Table 2 contains the training statistics for each of the RF variants trained on the MAGIC 
Gamma Telescope dataset.  Similar comments regarding the geometry of the forests 
when training on the Hidden Signal data can be made here as well.  The Misclass RF 
learns extremely tall and skinny trees.  Its average depth is 471.9 nodes, which is over 
fifteen times deeper than the next deepest tree type. Gini RF trees are much shorter than 
Misclass RF trees and much denser. DRF variants learn the shortest and densest trees 
among all RF variants. With early stopping, DRF trees are shorter and less dense 
compared to their non-early stopping relatives. 
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RF Variant Average 
Tree Depth 

Average # 
Nodes per 

Tree 

Average 
Nodes to 

Depth Ratio 

Training 
Time per 
Tree (s) 

Average 
Memory 

Usage per 
Tree (bytes) 

Misclass RF 471.9 3909.6 8.3 0.99 62553 
Gini RF 31.2 2317.0 74.4 0.07 37071 
DRF 16.4 4014.5 245.1 1.93 224810 
DRF EarlyStop30 13.0 1011.0 78.0 0.52 56615 

Table 2 – Statistics of representative forests for each of the major RF variants trained on 
the MAGIC Gamma Telescope dataset. All forests were trained on a MacPro 2 x 3 GHz 
Quad-Core Intel Xeon machine. 
 
In terms of training time and memory usage on a per tree basis, the RF variants can be 
ranked in the same order on this dataset as in the Hidden Signal dataset. Gini RF trains 
the fastest and produces the most compact trees followed in order by DRF EarlyStop30, 
Misclass RF, and finally DRF. Again, it is important to note that these statistics are 
derived on a per tree basis, so to gauge which forest trains the fastest and has the lowest 
memory footprint, we must take into account how many trees are required to achieve a 
level of desired performance. Figure 20 displays the area under the ROC curve for each 
of the representative forests in Table 2 as a function of the number of trees in the forest. 
Figure 20 shows the AUC computed over the lowest false alarm rates between 0 and 0.01 
which is motivated from the desire for high detection performance at the lowest false 
alarm rates. 
 
Misclass RF’s AUC more or less plateaus around 210 trees.  Gini RF reaches this point at 
about 125 trees.  DRF flattens out at about 100 trees, while DRF EarlyStop30 levels out 
at about 180 trees.  It is interesting to compare DRF EarlyStop30 with Gini RF at the 
AUC level where Gini RF tops out (0.0025 or 25% of maximum AUC over this false 
alarm region). It takes the Gini RF about 125 trees to reach this level of performance, 
while it takes only about 25 trees for DRF EarlyStop30.  In terms of overall forest 
training times for these systems, Gini RF forest trains faster; it takes about 8.75 seconds 
for the Gini RF and 13 seconds for DRF EarlyStop30. As far as memory is concerned, 
DRF EarlyStop30 has a smaller footprint; 1,415 Kbytes versus 4,633 Kbytes. While DRF 
EarlyStop30 does not train faster than a comparable Gini RF on this dataset, it is more 
compact which makes it more attractive for applications requiring both low false-alarm 
rates and small memory footprints. 
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Figure 20 – The area under the ROC curve (AUC) for very low false alarm rates between 0.0 and 
0.01 for representative forests of each RF variant versus the number of trees in the forest trained and 
tested on the MAGIC Gamma Telescope dataset. 
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